
CROSS-SITE REQUEST FORGERY

What is CSRF?

A online security flaw known as Cross-Site Request Forgery (CSRF) enables a

hacker to deceive a user into carrying out undesirable actions on a website

where they have verified their identity. CSRF forges requests without the user's

permission in order to take advantage of the confidence that a web application

places in their browser. In order to carry out illegal operations on the online

application, such as altering account information, transferring money, or

carrying out other tasks that the authenticated user is allowed to carry out, the

attacker coerces the victim into sending a maliciously designed request.

How does a CSRF Attack work?

1. User Authentication on Targeted Website: The user creates a session after

logging onto a website (like a banking site). As long as the user is logged

in, the browser automatically includes a cookie from the server with the

session information with each request to the website.

For example, when we log into ‘bank.com’, the browser stores a session

cookie as-

Set-Cookie: sessionid=abcd1234; Domain=bank.com

2. Attacker Prepares a Malicious Request: Knowing that the user has

authenticated on a particular website, the attacker creates a fraudulent

request that causes the website to perform an action (such sending money

to the attacker's account).

 The malicious request is embedded by the attacker into a forged

link or a hidden form. An example of a request for a money

transfer could be like follows:

<form action="https://bank.com/transfer" method="POST">

 <input type="hidden" name="amount" value="1000">

 <input type="hidden" name="account" value="attacker-

account">

 <input type="submit" value="Submit">

</form>

 Alternate link the attacker can use is:

<img

src="https://bank.com/transfer?amount=1000&account=attacker-

account">

This will trigger the request when the image will load.

3. Tricking the User: By deceiving the user, the attacker sends the forged

request unintentionally. This can be accomplished by inserting the

malicious code into a third-party website, phishing link, or email. The

request is immediately sent to the server as soon as the user clicks the link

or loads the webpage that contains the hidden form or picture.

4. Execution of Malicious Request: The user's browser adds the session

cookie when requesting the desired website because they have already

successfully authenticated. When a request like this one arrives to the

server with a valid session ID and comes from the user's browser with

proper credentials, the server considers it to be authentic.

5. Server Processes the Request: Assuming that the request was made by the

user, the server processes it and carries out the requested action (such as

moving money from the victim's account to the attacker's).

EXAMPLE SCENARIO:

Imagine a situation when a person is both visiting other websites and logged

into their bank.com online banking account. The following form is present on

the malicious webpage that the attacker is hosting:

<form action="https://bank.com/transfer" method="POST">

 <input type="hidden" name="amount" value="5000">

 <input type="hidden" name="account" value="attacker123">

</form>

The form is configured to submit a request for a money transfer to the bank.

While remaining logged in to the banking website, the victim unintentionally

accesses the malicious website. The malicious page loads quickly and uses the

victim's session to submit the form to the bank, prompting the bank to transfer

$5,000 from the user's account to the attacker's account.

Since the request originates from an authenticated session, the banking website

treats it as though the user has voluntarily made it, thus there's no need to be

suspicious.

A REAL WORLD EXAMPLE:

A CSRF attack happened in the real world in Gmail (2007). A CSRF exploit

was created by attackers to alter Gmail accounts' forwarding configurations. An

image tag was embedded in a rogue website to carry out the attack:

‘ <img

src="https://mail.google.com/mail/?view=up&act=cf&forward=attacker@gmail

.com"> ’

The request was issued using the authenticating cookies of the logged-in Gmail

user, and Gmail inadvertently altered the user's forwarding address to the

attacker's email.

How to Test For CSRF Vulnerability?

1. Review Application Behaviour: Verify whether sensitive actions—like

changing a password or transferring money—need to be authenticated

and whether they're started by sending HTTP POST requests.

2. Verify Use of Anti-CSRF Tokens: Verify if a distinct anti-CSRF token

that is updated for every session or request is included in every sensitive

request. Check to determine if the server accepts the request by removing

or changing the token.

3. Check Referer Header: Examine whether the application verifies the

request's source by looking at the ‘Referer’ header in incoming requests.

4. Create Malicious HTML/JS Code: By hiding the susceptible action in a

script or hidden form, you can simulate a cross-site request forgery

(CSRF) attack and see if the server handles it when the user logs in.

For example, create a form like-

<form action="https://victim-website.com/transfer" method="POST">

 <input type="hidden" name="amount" value="1000">

 <input type="hidden" name="account" value="attacker-account">

 <input type="submit" value="Submit request">

</form>

The server is probably vulnerable if it handles this request without

verifying the origin.

Example:

Assume for the moment that we are testing an application that allows users to

add things to their carts. Normally, a POST request such as this would be

needed:

POST /add-to-cart HTTP/1.1

Host: shop.com

Cookie: sessionid=abcd1234

If forming a GET request allows us to carry out the same action:

‘ ’

and the item is successfully added to the cart, the application probably has

CSRF vulnerability.

Impact of CSRF

 Financial Loss: Unauthorized fund transfers resulting from CSRF can

seriously harm one's finances.

 Account Compromise: Account takeover can occur when hackers alter

email addresses, passwords, or account settings.

 Data Integrity Breach: Malicious alterations to user data, such as

preferences or profile information.

 Service Disruption: Administrator rights can be abused by attackers to

stop or interfere with services.

Mitigation Measures

1. Anti-CSRF Tokens: Introduce distinct anti-CSRF tokens for every form

submission or session. Requests should not be processed until the server

has validated the token.

Example- Including a hidden input field in forms:

<input type="hidden" name="csrf_token" value="generated_token">

2. SameSite Cookie Attribute: Utilize the ‘SameSite’ property in cookies to

prevent cross-origin requests from being sent with them.

Set-Cookie: sessionid=abcd1234; SameSite=Strict

3. Double Submit Cookie: Adopt a method wherein a cookie and a form

parameter are used to store an anti-CSRF token. For the request to be

considered valid, both values must match.

4. Referer and Origin Header Validation: Verify that requests are originating

from a reliable domain by looking at the "Referer" or "Origin header."

5. User Interaction Verification: Before processing sensitive actions like

password changes or fund transfers, require re-authentication or

CAPTCHA.

6. Framework Security Features: Use the built-in security capabilities that

contemporary web frameworks (like Spring Security and Django's CSRF

middleware) offer.

A major online application vulnerability called Cross-Site Request Forgery

(CSRF) may allow a user to take unapproved actions. Developers should use

security headers, use anti-CSRF tokens, and impose stringent validation for

sensitive actions in order to stop these attacks. To guarantee application safety, a

thorough web security testing approach should include regular CSRF testing.

PRACTICAL TASKS DONE

REFERENCES

1. https://owasp.org/www-community/attacks/csrf

2. https://portswigger.net/web-security/csrf

3. https://brightsec.com/blog/cross-site-request-forgery-csrf/

4. https://owasp.org/www-project-web-security-testing-

guide/latest/4-Web_Application_Security_Testing/06-

Session_Management_Testing/05-

Testing_for_Cross_Site_Request_Forgery

5. https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html

6. https://brightsec.com/blog/csrf-mitigation/

